Green School
Bali, Indonesia

Architect
PT Bambu / Aldo Landwehr, John Hardy

Client
Yayasan Kul Kul

Design
2006

Completed
2007
Green School*
Bali, Indonesia

I. Introduction

The Green School with its affiliates the Meranggi Foundation and PT Bambu were founded by John and Cynthia Hardy, designers and environmentalists from Bali, Indonesia.

They were both concerned about the depletion of the world’s resources and became advocates for the use of bamboo as an alternative to rain forest timber as a building material.

The Green School creates a sustainable campus straddling both sides of the Ayung River in Sibang Kaja, Bali. The campus is situated in a lush jungle with native plants and trees along with sustainable organic gardens. The campus is powered by a number of alternative energy sources including bamboo sawdust hot water and cooking system and a hydro-powered vortex generator and solar panels. Campus buildings include: classrooms, gym, assembly spaces, classrooms, faculty housing, offices, cafes, and bathrooms. On the Green School campus are a range of inspiring architecturally significant spaces from large multi-storey communal spaces to much smaller classroom spaces. Bamboo is a local sustainable material used in innovative and experimental ways demonstrating its architectural possibilities. The result is a holistic green community with a strong educational mandate that seeks to inspire students to be more curious, more engaged and more passionate about our environment and our planet.

The Meranggi Foundation is an initiative to develop plantations of bamboo plants embedded in the local agrarian community through gifting bamboo seedlings to local rice farmers along with advice from bamboo experts about where to plant their plants. This environmental non-profit organization raises bamboo seedlings in their nursery and distributes them to farmers across the island of Bali helping them grow commercially valuable bamboo species. The Foundation maintains detailed planting records using GPS technology, monitors bamboo growth rates (including associated carbon capture) as well as securing markets for future bamboo trade. To date, the Meranggi Foundation has distributed over 60,000 bamboo seedlings, sharing their skills and expertise with locals to help grow and harvest high quality bamboo. In a few years time, the work of the Meranggi Foundation will generate enough bamboo for a growing sustainable construction industry and to supplement the income of local farmers.

PT Bambu is a for profit design and construction company that promotes the use of bamboo as a primary building material to avoid further depletion of our rain forests. The Green School campus is a giant laboratory built by PT Bambu demonstrating innovative uses of bamboo for a variety of building scales and programmatic types.
II. Contextual Information

A. Brief Historical Background

Founders of the Green School are two expatriates’ John and Cynthia Hardy who have lived in Bali for decades and were committed to giving back to a country that had been so good to them. John Hardy was born in Canada and travelled to Bali in 1975. Intrigued by Balinese craft traditions, he settled there and began producing jewellery with local artisans. Cynthia Hardy was born in America and arrived in Bali in 1982. John and Cynthia Hardy began their professional collaboration as the founders of an internationally respected jewellery company in 1989. In 2007, they decided to found an independent school on the island of Bali giving back to a place that had been so good to them.

‘We are building Green School to create a new paradigm for learning. We want children to cultivate physical sensibilities that will enable them to adapt and be capable in the world. We want children to develop spiritual awareness and emotional intuition, and to encourage them to be in awe of life’s possibilities.’ (John and Cynthia Hardy)

B. Local Architectural Character, including Prevalent Forms and Materials

The traditional Balinese house is usually a compound housing two or three generations of the same family in a village grouping called a banjar. Each compound is a microcosm of the universe with realms for the gods, man, and the impure spirits. Balinese homes are not architect designed, rather villagers build their own homes, or a community will pool their resources for a structure built under the direction of a master builder and/or a carpenter. The norm is a post and beam structural system with either wood or bamboo non-load bearing infill panels. Traditionally, rather than nails, mortis and tenon joints and wooden pegs are used. The roofs are a thatch material that can be made of coconut or sugar palm leaves, alang alang grass or rice straw.

The Green School buildings fully understand and respect the traditional vernacular architecture of the region and uses design creativity to go beyond to create modern spaces using traditional materials.

C. Climatic Conditions

Lying along the equator, Bali has a tropical climate, with two distinct monsoonal wet and dry seasons. Average annual rainfall in the lowlands varies from 70-125 inches. Humidity is generally high, averaging about 80%. Temperatures vary little throughout the year; the average daily temperature range on the island of Bali is 26-30 °C (79-86 °F). The Green School site is located at Latitude -8.548 and Longitude 115.136.

D. Immediate Surroundings of the Site

In central and southern of Bali the land descends to form an alluvial plain, watered by shallow, north-south flowing rivers, drier in the dry season and overflowing during periods of heavy
rain. The longest of these rivers, the Ayung River, flows approximately 75 km through central Bali.

Due to human influence, many we consider native to Bali have been introduced by humans within the last centuries, making it sometimes hard to distinguish what plants are really native. The most common larger trees are: banyan trees, jackfruit, coconuts, and bamboo species. The landscape is also populated with Acadia trees and many varieties of bananas plants. Numerous flowers can be seen such as hibiscus, frangipani, bougainvillea, poinsettia, oleander, jasmine, roses, begonias, orchids and hydrangeas. Rice comes in many local varieties. Other plants with agricultural value include: salak, mangosteen, corn, coffee and water spinach.

E. Topography of the Project Site

The site for the Green School straddles both sides of the Ayung River in central Bali on an undeveloped piece of land. The Green School campus abuts seven hamlets or local banjars. There is a 70 metre vertical drop from the table land on both sides down to the level of the Ayung River on a site that contains farmland, jungle, mountain sides and a river.

III. Programme

A. History of the Inception of the Project

In 2007, John and Cynthia Hardy’s decided to start a new school shaping both its educational curriculum and its built form. The Green School is the result of a lot of trial and error, hard work and a deep commitment to create an integrated vision for a sustainable campus. The scope of this endeavor grew organically, expanding from a school to a bamboo nursery to a bamboo factory. The site started off on one side of the river and then land was acquired on the other side of the river necessitating a bridge linking the site and future campus.

B. How were the Architects and Specialists chosen?

A multi-disciplinary integrated design team was needed to realize the Hardy’s vision for The Green School. Building a team to tackle the enormous challenges associated with creating a sustainable campus and a sustainable curriculum was not easy. There were many areas of this ambitious project that needed to be researched, designed and implemented and differing skill levels.

Designers and specialists were selected because of their commitment to sustainability as well as their ability to think in innovative and non-traditional ways. The traditional definitions of client, architect, consultant was blurred and reconsidered in the design process for the Green School.

Architects, graduate architects, jewellery designers, sculptors, structural engineers, bamboo experts, master builders worked together in a variety of ways to realize the Green School’s Kul-Kul campus. John Hardy was an essential member of the Green School design team as well as the school’s patron and client.
C. General Programme Objectives

The objective of this project was to create a place for educating young people to become the environmental leaders of the next generation. The physical surroundings for the school needed to express a sustainable design philosophy. It was determined by the school’s founders that the school could be a place for invention and experimentation with bamboo which is a locally available material in this equatorial climatic zone.

D. Functional Requirements

The design team’s brief includes site infrastructure as well as buildings to accommodate the school program.

Site infrastructure including pathways, landscaping, alternative energy power sources, bridges, parking areas, service zones

Functional program includes: Drop off pavilions; classrooms for children from Kindergarten to Grade 9; main assembly building providing multipurpose spaces for teaching, display, gathering, offices; gymnasium; Mepantigan area for Balinese martial arts; faculty housing; principal’s office; staff room; medical station; cafe or warung; composting toilets and change rooms.

IV. Description

A. Building Data

- Total site area 103,142.63 square metres
- Ground floor area 5,534 square metres
- Total combined floor area (ground floor and upper floors) 7,542 square metres

B. Evolution of Design Concepts

Response to Physical Constraints - Siting, Climate, Plot Ratios, etc.

The Green School is located on both sides of the Ayung River. Their sustainable approach to both campus planning and campus building requires greater attention to site infrastructure and its integration into the physical site. At the Green School, bridges, pathways and steps traverse the steep hillside linking various parts of the school programme. Every day, hundreds of Balinese use the new bridge to get to their temple, rice fields, work or school. It has become a piece of local infrastructure used by the students, teachers and parents along with the broader local community.

Response to User Requirements

The Green School campus is a giant laboratory experimenting with innovative ways to address sustainability. The design team started with faculty housing and moved up in scale to the most
public buildings on the campus. Each building completed provided lessons learned through the
design and realization that created greater confidence to take on new challenges.

Purely Formal Aspects

On the Green School campus there are many buildings. Their massing relates directly to their
programmatic use and their campus siting. In each building the bamboo structure is exposed,
expressed and celebrated. There are many generous roofs and very few walls and windows.
The large roof overhangs protect the spaces from driving rains and hot sun. The roofs are
covered with *alang alang* which is a local material used for vernacular domestic buildings.
Most Balinese temples and sacred spaces are also clad in *alang alang* which is closely cropped
like a sharp haircut. At the Green School, all of the buildings covered in *alang alang* that are
kept looser at the edges of the roof and not trimmed.

Landscaping

Landscape plays a major role in the Green School campus. Green school classrooms are
located on the western ridge of the campus sited around a series of are sustainable gardens
with Balinese rice and local vegetables which are tended by the school children and staff.
Students circulate through the gardens promoting interaction of all year levels whilst plant
varieties are named for children to learn about botany, biology and cultivation. Every garden
has its own cycle and one is observing seedlings, mature plants and freshly picked gardens
throughout the site.

There are some areas with large open surfaces for playing sports near the gym and heart of
school. There is a large mud pit for Balinese mud wrestling located near the Mepantigan
studio.

C. Structure, Materials, Technology

Structural Systems

Throughout the island of Bali and the country of Indonesia bamboo grows everywhere. It is
widely used for temporary structures such as communal festivities and religious events. The
understanding of and use of bamboo exists but only for temporary buildings or structures and
it is not considered as a material for permanent buildings.

On the Green School campus, bamboo is used in structurally innovative ways to create
original and inspiring architectural spaces. Throughout Southeast Asia, China and Japan
bamboo is used for flooring, for decorative screens and other non structural applications. In
some cases, bamboo is used as a wood substitute through bamboo trusses or bamboo glue-lam
beams similar to engineered wood products sold in North America. These applications while
using bamboo are traditional and conventional in their structural use of the material. Built
examples using structural bamboo are typically orthogonal with regular rectilinear shapes.

At the Green School’s public buildings - Heart of School, the gym, bridge, and the
Mepantigan bamboo is used to create large assembly spaces for gathering. Each building is a
different experiment in bamboo structures. Bamboo is used vertically as a cluster of columns and also creating a long span arch. Petung bamboo, *Dendrocalamus asper*, is adopted as the primary structure forming 3 interlocking trusses dissecting the triangular plan. The structural loading of the trusses are transferred to foundation though a traditional structural column type known as dupit.

The primary structure is anchored to the foundations by an innovative method of lacing river rocks and bamboo with reinforced steel connected to the concrete foundations. The bamboo connection to ground plane is tapped and filled with cement creating a solid structural connection for wind loading.

The secondary structure and rafter elements are lighter weight Bamboo *Tali*, *Gigantochloa Apus*. The rafters are installed at 300 mm centers fixed to the primary bamboo Petung with bamboo pins.

Alang alang or Balinese grass strip tiles are overlapped and individually tied to form the roofing surface adding additional bracing and strength to the structural components. The 3 interlocking trusses form breaks in the roof plane which is covered by canvas forming skylights.

Materials

- **Structural Members**
 At Heart of School, groupings of bamboo columns 16 – 18 meters high provide the structural mass for the soaring three storey high spaces. Throughout this building there are many bamboo joints that were tested at a 1:1 scale in structural testing labs.

 The Gymnasium is a multipurpose facility for physical activities and gathering. Technically demanding structural bamboo arches are used providing an 18 metre column free span and height of 14 metres.

 The Metapantigan Studio is multipurpose facility for theatre, social events and gatherings. The strength and stability of the structure relies on four main arches. Each arch consists of three petung bamboos providing another column free span. Stepped seating is integrated into the base of the building.

 Kul Kul Bridge is a bamboo suspension bridge connecting both sides of the Ayung River. The bridge has a span of 20 metres and a width of 2 metres. Empirically, this bridge has tested to subject 6 ton load.

- **Infill Materials**
 The main assembly buildings on the Green School campus do not have any walls or doors. Some of the offices, staff rooms and faculty housing use bamboo infill panels and single glazing to create enclosure. Within The Green School classrooms, canvas impregnated with natural latex is used to create intimate bubble spaces for gathering.
• **Renderings and Finishes**

Alang alang thatching has been used in Indonesia for hundreds of years and on the island of Bali it is the traditional system of roofing.

The blades of *alang alang* thatching are constructed from the *Grass Imperata Cylindrica* which is locally called *ambongan*. It is also called alang in Indonesian and Malay. It is a tough and resilient grass and grows best in harsh conditions and poor ground.

Construction Technology

The building of the Green School campus relies on local craftsmen and artisans to realize the numerous building types. Bamboo is used not only for the finished building but as the scaffolding and intermediary armature for construction. Low tech equipment and ingenuity are used to build large scale, complex spatial volumes without the benefit of heavy equipment or cranes.

The Green School design team worked directly with Professor Ir. Morisco, a world leader in structural properties of bamboo leading the Structural Engineering Laboratory in the Department of Civil and Environmental Engineering at Gadjah Mada University in Yogyakarta. His colleagues Ashar Saputra and Inggar Irawati working under Professor Morisco formed the structural engineering team for this project.

The design team prepared detailed construction models and brought them to the Structural Engineering laboratory. The engineering team took the physical model and transformed it into a computer model. It took them over two months to prepare accurate computer models of all of the Green School buildings.

Through the computer models the structural engineering team was able to test the axial loading, window and uploading, earthquake loads to ensure compliance with the Indonesian building codes. The types of buildings designed for the Green School were very irregular and there was very little precedent for methodologies and precedents for analysis.

Building Services, Site Utilities

A local volcanic stone provides permeable paving all of the pedestrian pathways and parking areas on the Green School campus. Domestic hot water heaters are fuelled by bamboo sawdust and rice husks. A vortex hydroelectric plant diverts water from the Ayung River and creates a vortice which can be tapped to create hydro-electricity. This environmentally friendly technology is in its early stages of development. Composting toilets are used throughout the Green School campus.

Bamboo sawdust remnants from PT Bambu’s factory and rice husks are used to fuel hot water heaters and kitchens. A vortex hydroelectric plant diverts water from the Ayung River and creates a vortice which can be tapped to create hydro-electricity.

Solar panels are also located on campus. The Green School’s composting toilets preserve human waste and use to create bio-gas and compost. All liquid waste passes through a system...
which directs the liquid through a gravel chamber where it is filtered by feeding plants and later used for irrigation of crops. Green School garbage is sorted and segregated. Metal and plastics is recycled and organics are composted.

Technology

The Green School buildings rely on local master builders who work with bamboo on a daily basis to realize the remarkable architectural spaces on the campus. The craftsmen who install the alang alang roofs understand how to install this primitive technology helping to create modern spaces. All buildings on the Green School campus were built with bamboo scaffolding and basic tools. No heavy equipment or cranes were used.

Materials

Bamboo is believed to be the fastest-growing plant on the planet and is considered to be one of our most sustainable resources. At the Green School this traditional material is used to create modern organic spaces. The Green School’s goal is to use between 99-100% natural materials in all construction projects and to recycle as many materials as possible and to manage its waste in a responsible manner. All materials incorporated are locally available materials and simple construction techniques that address prevailing climatic conditions.

Indonesian bamboo is used throughout the Green School campus. Bamboo is believed to be the fastest-growing plant on the planet and is considered to be one of our most sustainable resources. At the Green School this traditional material is used to create modern organic spaces.

Local mud mixed with 15% cement is used for all floors on the campus. Bamboo structural columns are selected from local bamboo lengths.

Bamboo flooring is widely used on the Green School campus for upper floors of buildings like the Heart of School. These floors are 100% bamboo planed and pinned together with bamboo pins using no glue or chemical finishes.

Labour Force

The builders of the numerous buildings on the Green School campus are all local Balinese artisans and craftsmen. The building team have an innate understanding of how to construct with bamboo and worked closely with the multidisciplinary design team to realize a campus full of unique and unconventional buildings.

Professionals

Principal Designers: Aldo Landwehr (deceased) and John Hardy
Architects: Cheong Yew Kuan, Effan Adhiwira, Miya Buxton, Hanno Burtscher, Philip Beck
V. Construction Schedule and Costs

A. History of Project Design and Implementation

1996 Hardy House in Sayan, Bali. Cheong Yew Kuan was commissioned by John and Cynthia Hardy to design a house overlooking the Ayung River. Massive adobe walls define the site and protect a two storey house with an open living platform. Natural logs create large wooden portals on the ground floor that support a second floor tree house.

2003 Kapal Bambu, Badung, Bali. Cheong Yew Kuan was commissioned by John and Cynthia Hardy to design a jewellery showroom using bamboo as the primary building material. The soaring 42 foot high space is inspired by a traditional Balinese watilan or community hall. Bamboo is the primary structural material and the building is clad in alang alang.

2005 Tiga Gunung, Badung, Bali. John Hardy, Aldo Landwehr and Jorg Stamm collaborated on the design of a large work space featuring three spiralling central bamboo columns. This cluster of bamboo columns impacts the interior space by providing light through their hollow openings and creates the illusion of three peaks on the exterior. Mud walls form the perimeter and on exterior the building clad in alang alang resembles a mountain range.

2005 The Long Barn, Baung, Bali. Ketut Indra Saputra built a 56 m long bamboo barn featuring a stairway that can be winched up.

2006 Sumatra House, Baung, Bali. Miya Buxton collaborated with John Hardy to build a traditional Minangkabau House or big house found in the highlands of West Sumatra. The traditional Minang houses are made of wood with a bamboo roof. The Sumatra House is entirely made from an extremely rare black bamboo native to Java. Traditional Columbian binding and pinning joinery eliminated the need for nails and bolts. The footings were built on top of river boulders.

2006 Master Plan for Green School Campus. Cheong Yew Kuan was asked to design the campus master plan. He located all the key buildings and open spaces, bridge placement and classrooms.

PT Bambu opens.

The Green School hires director and faculty in preparation for a September 2008 opening.
2007 PT Bambu Kitchen, Badung, Bali. Aldo Landwehr, John Hardy, Yulianto Maliang, Miya Buxton. The kitchen prototype for Heart of School. This experimental project is a gathering place for the creative designers, bamboo factory works and field staff to gather at lunch time. The kitchen staff prepares meals on stovetops fuelled by bamboo shavings and husks from the nearby factory. The space is furnished with bamboo tables and chairs and provides views over the rice and vegetable fields.

Kul Kul Bridge, Green School Campus. Aldo Landwehr, John Hardy and Jorg Stamm, Yulianto Maliang collaborated on the design for the bridge. Jorg Stamm is an internationally recognized designer and master builder of large bamboo structures, buildings, and bridges. He is based in Candelaria, Columbia where he founded the company Eco Bamboo.

Classrooms and Teacher’s Housing, Green School Campus. Aldo Landwehr, John Hardy, Effan Adhiwira, Yulianto Maliang. Six classrooms for school children and Nine individual houses for teachers were designed and built. A variety of forms were realized for these two smaller building types.

Mepantigan Dome, Green School Campus. Cheong Yew Kuan, Miya Buxton, Yulianto Maliang. Three levels earthen brick stepped amphitheatre seating provides an earthbound base to a majestic 35 metre span assembly space with a semi-transparent centre bringing light into the space. Used for performances, gathering and assembly.

Hydro-powered vortex generator, Green School Campus. Frank Zotela. Innovative alternative energy system using water from the Ayung River to create hydro power.

2008 Heart of School, Green School Campus. Aldo Landwehr, John Hardy, Effan Adhiwira, Yulianto Maliang, Phillip Beck, Jorg Stamm. The Heart of School consists of three spiraling roof forms that are interconnected to creating remarkable inspiring space for gathering, classrooms, offices, receptions. Students and faculty pass through this building as they move through the campus.

Additional classrooms, bales, staff room, principal’s office. Green School Campus. Effan Adhiwira, Yulianto Maliang. Buildings needed to accommodate Green School program.

Design bamboo furniture for school. Chairs, desks, shelving, shoe storage.

Renewable energy solutions. Implemented.

The Meranggi Project. Nursery established and employees hired.

The Green School opens.
2009 Gymasium. Green School Campus. Ketut Indra Sapurtra. The gym is a large multi-use space for gathering, physical activities and assembly with an 18 metre column free span, 14 metres high created by a series of bamboo arches.

Warung / cafe. Green School Campus.

B. Total Costs and Main Sources of Financing

<table>
<thead>
<tr>
<th></th>
<th>Amount in Local Currency</th>
<th>Amount in US dollars</th>
<th>Exchange Rate</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Total Initial Budget</td>
<td>58,170,000,000.00</td>
<td>6,000,000</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>B. Cost of Land</td>
<td>14,542,500,000.00</td>
<td>1,500,000</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>C. Analysis of Actual Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Infrastructure</td>
<td>8,420,921,880.00</td>
<td>868,584</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>2. Labour</td>
<td>12,788,790,840.00</td>
<td>1,319,112</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>3. Materials</td>
<td>6,287,672,860.00</td>
<td>648,548</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>4. Landscaping</td>
<td>1,114,925,000.00</td>
<td>115,000</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>5. Professional Fees</td>
<td>1,454,250,000.00</td>
<td>150,000</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>6. Other</td>
<td>146,132,735.00</td>
<td>15,073</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>D. Total Actual Costs (without land)</td>
<td>30,212,703,010.00</td>
<td>3,116,318</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>E. Actual Cost (per sq. meter)</td>
<td>3,635,625.00</td>
<td>375</td>
<td>9695</td>
<td></td>
</tr>
</tbody>
</table>

C. Qualitative Analysis of Costs

Actual Cost: USD 375 per square foot

D. Maintenance Costs

There are no mechanical systems at the Green School. Natural ventilation is used for all buildings on the campus.

E. Ongoing Costs and “Life Performance” of Building

Alang alang roofing has a 6 - 10 year replacement cycle. The material is available locally and the craftsmen installing the material are also local.

Bamboo has a 20 years life cycle based on conservative estimates. Selective replacement is anticipated.
VI. Technical Assessment

A. Functional Assessment

The Green School buildings provide PT Bambu with an excellent array of types of installations and they allow them to monitor their building performance for the next few decades allowing them to make modifications based on performance.

B. Climatic performance

The open perimeter walls and central skylight in the main buildings at The Green School allows ample natural and diffused daylight to enter the building, allowing efficient lighting for teaching needs and eliminating the need for artificial lighting during daylight hours. Additional low energy lighting is incorporated for after hour needs, powered by renewable energy such as solar panels.

The combination of open walls and semi-detached skylight also allows passive cross ventilation and natural upward draft to vent and cool the building. For the hottest days the central ‘bubble’ which is a canvas cocoon coated with natural latex is fed by a huge fan cooling the students through the peak mid-day sun.

The thermal mass of the Alang-alang grass roof protects the students from direct thermal gain as well as acting as sound absorption for acoustic comfort. The black board and storage units act as partitions and screens adding additional acoustic protection from and to adjacent classrooms.

C. Response to Treatment of Water and Rainfall

The large roof forms all have generous overhangs provide additional protection during wet season rains. All pathways for either vehicles or pedestrians use a local volcanic rock and are permeable. Steep hillside drains water to the Ayung River. Bamboo water channels are used to direct flow.

D. Environmental Response

The Green School campus is blanketed by an organic permaculture system design by international and local experts. The School’s gardens grow over thirty varieties of rice, fruits and vegetables. Fertile land, a quick growing cycle provides visible farming results feeding the school children, faculty and PT Bambu staff. The organic farming connects the students directly to the land forming the basis of an experiential learning component of the school curriculum.

E. Choice of Materials, Level of Technology

Green school strives to use alternative technologies to ensure the campus is as energy independent as possible. Experimentation with sustainable renewable energy solutions extends to; micro-hydro power generation, solar panels and a bio gasification unit that uses bamboo
sawdust, rice husks and other organic materials to produce energy for heating hot water and cooking.

Through the use of skylights and passive ventilation and cooling, energy intensive artificial lighting and climate control systems are virtually redundant. Each student is issued with a laptop computer, powered by renewable energy, further illustrating Green schools commitment to 21st century education beneath an environmental umbrella.

F. Response to, and Planning for, Emergency Situations

The Green School campus is located on the table land and hillside on both sides of the Ayung River and is protected from any major flooding because of the steep vertical elevation between the river and the school buildings. The Ayung River also provides a readily available and accessible water supply in case of fire.

Indonesia is an earthquake prone zone and bamboo buildings provide a positive alternative to traditional building practices. The buildings designed at the Green School use clusters of bamboo columns or long span bamboo arches as their structural approach which are lightweight and respond well to the tremours associated with earthquakes. The school buildings have no doors or windows and access to the exterior is immediate and direct. PT Bambu have plans to add a slide from the upper levels of their largest buildings providing even easier exiting. The big tropical umbrellas of the larger Green School buildings are susceptible to high wind uplift and the structural systems have to take this into account providing appropriate anchorage and resistance.

G. Ageing and Maintenance Problems

The Green School is located in a tropical climatic zone at equatorial latitude. Bamboo has many positive qualities but it is also susceptible to humidity, insects and mould. All structural bamboo used at the Green School is extensively treated using an organic Borax compound. The bamboo is cleaned and then submerged in a Borax bath for a period of 4-6 weeks to ensure resistance to insects. An environmentally friendly waterproof coating is sprayed on the bamboo members to prevent moisture penetration. The buildings on the Green School campus are very open and any humidity build-up can also dry out easily. Ensuring that there are no areas for moisture to build up is essential. The visual examinations carried out by leading structural engineers reviewing key structural joints throughout the campus will ensure a proactive approach to maintenance.

H. Design Features

The Green School campus contains a range of inspiring sculptural volumes using bamboo in innovative ways.

The Mepantigan Studio is defined by a central linear skylight bringing light into the middle of a large assembly space. Exposed bamboo structural elements create an expressive system of supports for its broad and generous roof. Exposed decking reveals the underside of the alang alang roof. Low retaining walls transform into stepped amphitheatre seating providing a broad
earthbound base contrasting with the soaring roof above. The interior of this light-filled space is used for daily school lunches, traditional Balinese martial and performing arts and community gatherings.

The Kul Kul Bridge is an elegant bamboo bridge. It is a pivotal piece of The Green School campus plan linking the west and east portions of the school and providing a metaphorical link between the school community and the local community. The bridge design provides thresholds at either end with enclosure and containment. This is contrasted with the middle of the bridge which reveals views up and down the Ayung River connecting you to the landscape beyond. The minimal but expressive structure sets a new design threshold for a bamboo bridge.

Heart of School is a dynamic sculptural volume that is located at the crossroads of all paths through the Green School campus. Three clusters of vertical bamboo columns create a multi-stemmed forest. Upper level platforms provide varying height spaces above and below. Soaring volumes are contrasted with more intimate but open spaces. The Heart of School explores the organic possibilities of bamboo as a vertical structural element defining interconnected light filled space.

The Gym at The Green School celebrates and exploits the structural bamboo arch to create a large column free space. The large structural arch provides an inexpensive big roof that can be built quickly.

I. Impact of the Project on the Site

The sustainability agenda for The Green School campus ensures that it is committed to a small ecological footprint. The campus plan respects the seven existing banjars that abut the site. The new pathways for the campus that have become a connective tissue supporting and adding to the existing pedestrian network serving both local villagers and the school community simultaneously.

The Green School’s commitment to green alternative energy sources reduces any long term energy loads. The School’s interest in and commitment to exploring the most innovative site infrastructure technologies is forwarding thinking and must be applauded.

The Green School buildings use local materials and they rely on the expertise of local craftsmen. The symbiotic relationship between the school community and its support of the social and cultural life of the adjacent neighbourhood and the Balinese craft tradition is an essential aspect of the project’s positive impact.

The Green School master plan has understood the existing topography and its potential and inserted new buildings within the existing landscape. There have been minimal alterations to existing grade and the site could easily revert back to previous agricultural uses.
J. Durability and Long-time Viability of the Project

The Green School’s approach to sustainability is tied to its long term durability. Using local building materials reduces transportation costs and ensures support for local farmers and labourers. Using local craftsmen to build the Green School buildings ensure that their expertise is valued and supported. Supporting local craftsmen supports the local banjar economy and ensures that the skills will be available for the long term maintenance of the Green School campus and for future projects.

K. Ease and Appropriateness of Furnishings; Interior Design and Furnishing

The bamboo furnishings at the Green School are an extension of their design philosophy. The school furniture celebrates the enormous possibilities of bamboo. Bamboo flooring, bamboo steps, bamboo shoe storage units, bamboo reception desks, bamboo lounge chairs, bamboo benches are all used on a daily basis by the Green School community.

Classroom chairs and desks are simple elegant solutions to the needs of students and teachers. All furniture is made entirely of bamboo; light weight and movable for different teaching requirements. School desks interlock in different spatial arrangements; they can also be separated for individual learning or adjoined in pairs and groups. Storage units act as both screening devices and storage, all inherently organic and playful. Additional freestanding units take the form of a pineapple, celebrating the creative and the practical.

The classroom is designed around 3 interchangeable and flexible spatial conditions; formal, informal and intimate. The classroom adopts a triangular plan, a large floating roof, open walls and minimal structural columns. The classroom is planned for maximum open space, facilitating flexible spatial arrangements to accommodate different teaching styles.

Within the triangular plan are located 3 interchangeable yet distinct spatial conditions:

- Formal classroom with desks facing teacher and black board.
- Informal meeting space with circular couches ideal for brainstorming and creative thinking.
- Communal desk and work bench for art and group exercises.

VII. Users

A. Description of those who use or Benefit from the Project

The students enrolled at the Green School are the primary beneficiaries of its founder’s efforts to create a living sustainability. Young people are educated about the challenges the earth will be facing in their lifetime. Wealth is generated where it is most needed – in the local community. Local farmers, local artisans, factory workers, administrative staff, kitchen staff, maintenance staff, construction workers sustaining the village way of life as the world becomes modernized. Balinese expertise in organic farming, renewable energy and
constructing innovative bamboo buildings is embedded in the Green School and can be maintained with an on-going symbiotic relationship with the local community.

B. Response to Project by Clients, Users, Community

There is a great deal of respect from the Southeast Asian architectural community for the Green School. There is a great deal of discussion about sustainability but the results tend to emphasize technological elements which have a limited impact on energy use while using a great deal of embodied energy. Architects in this equatorial region are very aware of the negative environmental impact that modern high rise air conditioned buildings are having on our planet.

There are few examples of a truly holistic approach to sustainability addressing all facets of footprint reduction. The Green School leads the way in speaking about the beauty of architecture, the role of sustainability and the stewardship of the environment all at the same time. This is considered an exemplary project responding specifically to its equatorial region and the particular issues related to its climatic zone.

The Green School was featured in the recent issue of FutureArc which is the leading magazine in Asia Pacific addressing architecture, design and sustainability. The editor in chief Dr. Nirmal Kishnani is aware of all built and unbuilt projects in the region. He is also associated with the World Green Building Council Asia Pacific Network and is committed to educating architects about their role in transforming our world to become more sustainable. In the recent article FutureArc article he stated, “The school is in its infancy; so we wish them well and hope the lessons learned here will translate well to other parts of Asia.” In the same article, he asks, “architecture without architects, it (The Green School) was designed by a sculptor – designer who worked with Hardy in his jewellery business. If this project needed no architect, yet is able to offer us reflections on Architecture and sustainability, what then are we teaching in schools of Architecture?

“Well, this is my second visit to Green School. I was at Green School when it was really green, when it was just coming out of the ground. I’m back now and it’s about half done and I’m really excited to see it when it’s completed. I think it’s a fantastic concept. It’s been designed with a real vision in mind on how to educate young people about the world they’re growing up in and how to make it a more sustainable place. And so I’m really looking forward to visiting again once it’s up and running.” (Ann and Thomas L. Friedman, Pulitzer Prize winning New York Times columnist and author of the best seller The World is Flat)

“Fantastic…That was my first impression of Green School. The buildings are inspiring; its architecture design innovative and artistic. Bamboo, traditionally regarded as a cheap building material, once treated and preserved properly, has an awe-inspiring potential comparable to other commercially-used building materials. It is my great hope that Green School will contribute towards the development of affordable public housing in Indonesia by using beautiful and strong bamboo as alternative building materials. Once again, congratulations and keep the creative juices flowing.” (Mohammad Yusuf Asy’ari, Minister of Public Housing, Republic of Indonesia.)
C. Popular Reaction to the Project

The popular reaction to the Green School is overwhelmingly positive in its endorsement of the school’s mission and visionary approach to education and sustainability interwoven.

“My job is to create wonder in people. However it’s rare for me to get that same feeling. Thank you Green School, both architecturally and in mission, you inspire and astonish. You’ve accomplished a spectacular piece of visual magic with your Heart of School building. It’s a breathtaking as the nature that surrounds it.” David Copperfield, World Class Magician.

“Both visionary and practical, the Green School is a pioneering effort to turn young leaders away from the waste and pollution of the dominant culture, towards truly sustainable ways of living. The School’s magnificent bamboo architecture is an outstanding example of the ecological, spiritual and aesthetic benefits of working with nature rather than against her.” Helena Norberg-Hodge, Founder and Director of International Society of Ecology and Culture (ISEC) in London, environmental analyst, and Right Livelihood Award recipient.

“I applaud the aspirations of the Green School to create an educational experience that is built upon respect for Balinese culture as well as sustainability of nature. The world needs your inspiration and ingenuity. Peter Seligmann, Conservation International, Co-Founder and CEO and Chairman.

D. What do Neighbours and those in the Immediate Vicinity think about the Project?

The Green School has been well received by the neighbours in the immediate vicinity. The Green School is part of a complex multi-generational Balinese community of banjars. There are no security fences at the Green School. Their long term security is guaranteed by the school’s long term relationship with their neighbours.

The Green School’s commitment to the local community extends to a twenty percent intake of Balinese children who attend Green School through a scholarship program. Additionally the Green School has developed a program for educating local children about waste management and local schools are taking on projects to grow and maintain bamboo. The interaction and sensitivity towards the local and global community further enhances the unique international community focus. The Green School and PT Bambu also employ many local villagers to work for them.

“A sincere thank you for an absolutely inspiring day at our tour of the Green School. On behalf of the members that participated on our field trip, we all thank you. All of us were in awe of the progress with this exceptional endeavour and we wish you the best with the Green School. We hope in the future to be supportive of your scholarship program too.” Rotary Club, Seminyak, Bali.

“Two thumbs up for Green School as I see this is very important contribution to build sustainable brand of Bali” Ayip, Bali.
“Wow! This place is amazing. Architecturally stunning and beautifully situated, the Green School is a model for all things possible in education. Global staff, balanced curriculum, community involvement, family-based housing and a vision for developing the next generation of great thinkers and leaders.” Bamboo League.

VII. Persons Involved

Vision, concept and design
John Hardy
Cynthia Hardy

Concept and Design
The late Aldo Landwehr

Architects
Effan Adhiwira
Yulianto Maliang
Miya Buxton
Philip Beck
Cheong Yew Kuan

Executive Director
Kumar Bothra

School Director
Ronald Stones, OBE

Design Manager Admin
Marni Dalle

Engineers
Prof. Ir. Morisco Ph.D.
Ashar Saputra, Ph.D
Inggar S. Irawati, S.T., M.T

Banboo Consultant
Jorg Stamm

Meranggi Foundation
Chris Major, director

Project manager
Ketut Indra Saputra

Admission director
Ben Macrory

Operational manager
Nina Thresia

Operational and inventory manager
Aswini Agarwal

Inventory manager
Puspita

Finance manager
Jeckson Sinaga

Legal manager
Putu Eka

Human Resources manager
Putu Suwarmika

Design assistant
Josie

Purchasing Manager
Anita

Site supervisor
I Ketut Moko

Contractor
I Ketut Sudarma

Master craftsmen
Sutanaya, I Gede
I Made Kura
I Wayan Murdita
I Ketut Sumerta
Budiarta, I Made
Dama, I Wayan
Agustina
VIII. Bibliography

In progress.

Brigitte Shim

May 2010

* This report is the original, unedited version sent by the author on the 13th May 2010.
Heart of School, site plan.

Heart of School, east elevation.
Heart of School.

Interior view of the Heart of School bamboo roof.
Meganigan studio, exterior, multifunctional school/community/performance space.
Classroom.
Drama class in Heart of School.

Classroom n°3.
The Kul Kul bridge uniting the east and west lands over the Ayung River.

Entrance of the Kul Kul bridge.
Gymnasium and football playground.

Director’s House.
Kitchen of the PT Bambu School.

Central part of the kitchen where is cooked all the food.
I. IDENTIFICATION

Project Title: Green School
Street Address: Banjar Saren, Sibang Kaja Abiansemal
City: Badung, Bali, Country: Indonesia

II. PERSONS RESPONSIBLE

A. Architect/Planner
Name: PT Bambu – Bambu
Mailing Address: Banjar Piakan, Sibang Kaja, Abiansemal
City: Badung Bali, Postal Code: 80352
Country: Indonesia, Telephone: +62 361 469 874
Facsimile: -, E-mail: marni@ptbambu.com
Principal Designer: Aldo Landwehr / John Hardy

B. Client
Name: Yayasan Kul Kul
Mailing Address: Banjar Saren, Sibang Kaja Abiansemal
City: Badung, Bali, Postal Code: 80352
Country: Indonesia, Telephone: +62 361 469 875
Facsimile: -, E-mail: Ronald.stones@greenschool.org

C. Project Affiliates / Consultants
Please list those involved in the project and indicate their roles and areas of responsibility (e.g. engineers, contractors, economists, master craftsmen, other architects, clients, etc.). Please cite addresses and telephone numbers separately.

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheong Yew Kuan</td>
<td>Architect</td>
</tr>
<tr>
<td>Effan Adhiwira</td>
<td>Architect</td>
</tr>
<tr>
<td>Miya Buxton</td>
<td>Architect</td>
</tr>
<tr>
<td>Hanno Burtscher</td>
<td>Architect</td>
</tr>
<tr>
<td>Philip Beck</td>
<td>Architect</td>
</tr>
<tr>
<td>Prof. Ir. Morisco Ph.D.</td>
<td>Engineer</td>
</tr>
<tr>
<td>Ashar Saputra, Ph.D.</td>
<td>Engineer</td>
</tr>
<tr>
<td>Inggar S. Irawati, S.T., M.T</td>
<td>Engineer</td>
</tr>
</tbody>
</table>
III. TIMETABLE
(please specify year and month)

A. Commission: March 2005
B. Design:
 - Commencement: June 2005
 - Completion: Dec 2007
C. Construction:
 - Commencement: Feb 2007
 - Completion: Dec 2007
D. Occupancy: September 2007

Remarks, if any:

IV. AREAS AND SURFACES
(please indicate in square metres)

A. Total Site Area: 103142.638 m²
B. Ground Floor Area: 5534 m²
C. Total Combined Floor Area including basement(s), ground floor(s) and all upper floors: 7542 m²

Remarks, if any:

V. ECONOMICS
(please specify the amounts in local currencies and provide the equivalents in US dollars. Specify the dates and the rates of exchange in US dollars at the time.)

<table>
<thead>
<tr>
<th></th>
<th>Amount in Local Currency</th>
<th>Amount in US dollars</th>
<th>Exchange Rate</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Total Initial Budget</td>
<td>58,170,000,000.00</td>
<td>6,000,000.00</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>B. Cost of Land</td>
<td>14,542,500,000.00</td>
<td>1,500,000.00</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>C. Analysis of Actual Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Infrastructure</td>
<td>8,420,921,880.00</td>
<td>868,584</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>2. Labour</td>
<td>12,788,790,840.00</td>
<td>1,319,112</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>3. Materials</td>
<td>6,287,672,860.00</td>
<td>648,548</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>4. Landscaping</td>
<td>1,114,925,000.00</td>
<td>115,000</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>5. Professional Fees</td>
<td>1,454,250,000.00</td>
<td>150,000</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>6. Other</td>
<td>146,132,735.00</td>
<td>15,073</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td>D. Total Actual Costs</td>
<td>30,212,703,010.00</td>
<td>3,116,318</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
<tr>
<td></td>
<td>(without land)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Actual Cost (per sq. meter)</td>
<td>3,635,625.00</td>
<td>375</td>
<td>9695</td>
<td>Sep 30 2009</td>
</tr>
</tbody>
</table>

Remarks, if any, on costs:
VI. PROJECT DESCRIPTION

Green School with its affiliates PT Bambu and Meranggi Foundation was founded by John and Cynthia Hardy, designers and environmentalists from Bali, Indonesia. Concerned about the depletion of the world’s resources, they became advocates for the use of bamboo and wanted to create a project that offered a strong alternative to rain forest timber as a building material, while participating in the fight against climate change and poverty.

They decided to build a school demonstrated how to:
Build with sustainable materials;
Inspire & educate children to live sustainably;
Motivate communities to fight climate change and poverty.

To build such a project, three entities were created: the Green School (the architectural project), PT Bambu and the Meranggi Foundation that work hand in hand.

The Green School, built by PT Bambu is an educational institute teaching a modern curriculum layered with Green Education. Beside traditional subjects, children learn on campus (located on organic farmland), about environmental practices, renewable energy, aquaculture and organic farming.

PT BAMBU is a design & construction company that promotes the use of bamboo as timber for buildings and furniture to avoid further depletion of the rain forest.

The Meranggi Foundation (Bamboo Community Project) is an initiative to develop plantations of bamboo timber through gifting seedlings to local rice farmers together with advice about where to plant on previously unused areas. In a few years time it will generate enough bamboo for the growing need of sustainable construction and supplement the income of farmers.

This project involves multiple communities in the production and the transformation of bamboo into buildings and later, peoples behavior. Farmers plant and harvest the bamboo; local artisans transform it into material for construction which then supplies the master builders. The project serves as a model of sustainable ecological building and replicas are already in planning to benefit other communities around the world.

VII. MATERIALS, STRUCTURE, AND CONSTRUCTION

Structure: Petung bamboo, Tali bamboo, Duri bamboo.
Roof: Alang alang, Bamboo shingles, Earth / grass, Bamboo rope.
Walls: Bamboo, Rammed earth, Mud, Cotton, Glass, Low fired brick.
Floor: Mud, Natural stone, Terracotta tiles, bamboo.
Foundations: Concrete, Recycled rubble, Rebar, River rock, bamboo form work
 Skylights: Recycled car wind shields, Glass, Polycarbonate, Tarpauline.
Roads & Walkways: Volcanic stone, Sand and gravel, Paras, Earth.
Interiors (furniture, railings, stairs, blackboards): bamboo.

Bamboo is the primary building material used in the construction of GreenSchool, for both architecture and furniture. It has a comparable strength to timber but with the addition of flexibility which allows us to design innovative, organic, sculptural type architecture and objects.

For longevity, bamboo poles should not come in contact with the ground to reduce the impact of humidity and termites/insect attack, so every bamboo column in GreenSchool rests on top of a beautiful, natural river stone. A rebar drilled through the rock connects the foundation with the bamboo column which is further strengthened with concrete filler poured inside the bottom of the bamboo. This produces a beautiful, strong, natural base for our structures.

Limiting exposure to the sun and the rain is a driving principal of designing a bamboo structure. The buildings at GreenSchool all have outward leaning columns or large roof overhangs or a combination of both.

Our architecture is inspired by the inherent characteristics of the bamboo pole itself. We strive to maximize the span of the bamboo structure, optimize the natural “curve/flex” in the pole allowing us to design and construct organic-natural shaped buildings.

PT Bambu also developed innovative applications of bamboo used as building components. In some buildings in GreenSchool, we replaced round bamboo with Bamboo Split and Bamboo Lidi for use in beam structures. Bamboo Split is a rectangular, compacted grouping of split pieces of bambu, connected together with bamboo pins and Bamboo Lidi, is a round beam comprised of narrow, long bamboo splits twisted together and tied with bamboo rope. This allows us to give shape and strength to may of our curved structures.

For flooring, PT Bambu created a 3.5cm thick bamboo plank panel, hand made with 3 meter, rectangular split bamboos, connected together with long bamboo pins functioning as dowelling.
VIII. PROJECT SIGNIFICANCE AND IMPACT

The project is significant for many reasons, but most of all for the holistic way in which it attempts to direct a way forward human beings living sustainably. The blend of educating young people about the challenges the earth will be facing in 2025, in a set of buildings that were built from local materials grown in their lifetime, and with a program to prepare more raw material (bamboo) for the demand that will surely follow. Wealth is generated where it is most needed, the local farmers, local artisans, local people serving the teaching, administration and maintenance of the school and the project is producing human expertise in organic farming, renewable energy and construction from locally available materials.

Already, with the project still in its infancy, there is a tremendous amount of interest in replicating Green School Bali in other places around the world. The team responsible is preparing to create a blueprint of the Green School, PT Bambu (Bamboo Factory) & Bamboo Community Project (Bamboo Growing) so that this self sustaining project can be modelled elsewhere.

LIST OF WEBSITES

www.ptbambu.com
www.greenschool.org

Please note: The submission of this Record is a prerequisite to candidacy for the Award. All information contained in and submitted with the Record will be kept strictly confidential until announcement of the Award is made. Subsequently, such material may be made available by the Aga Khan Award for Architecture and you hereby grant the Aga Khan Award for Architecture a non-exclusive licence for the duration of the legal term of copyright (and all rights in the nature of copyright) in the Material submitted to reproduce the Material or licence the reproduction of the same throughout the world.

Name (please print) ...
Signature .. Date ________________

4/4
<table>
<thead>
<tr>
<th>Title</th>
<th>Name</th>
<th>Address</th>
<th>Phn</th>
<th>Emails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect</td>
<td>Cheong Yew Kuan</td>
<td>Area Designs 45 Cantonment Road Singapore 089748</td>
<td>+65 - 6735-5995</td>
<td>info@areadesigns.com</td>
</tr>
<tr>
<td>Architect</td>
<td>Effan Adhiwira</td>
<td>PT Bambu Br. Piakan, Sibang kaja Abian Semal Badung Bali</td>
<td>+62) 361 469874</td>
<td>effan@ptbambu.com</td>
</tr>
<tr>
<td>Architect</td>
<td>Miya Buxton</td>
<td>4616 25th Ave NE #32 Seattle, Wa. 98105 - USA</td>
<td>+1 (206) 371 5171</td>
<td>miya@habitecture.com</td>
</tr>
<tr>
<td>Architect</td>
<td>Hanno Burtscher</td>
<td></td>
<td>+(62) 812 3621 6243</td>
<td>h.hanno@hotmail.com</td>
</tr>
<tr>
<td>Architect</td>
<td>Philip Beck</td>
<td>www.beckstudio.net</td>
<td></td>
<td>philip@beckstudio.net</td>
</tr>
<tr>
<td>Engineer</td>
<td>Prof. Ir. Morisco Ph.D.</td>
<td>Pogung Baru F-33, Yogyakarta, Indonesia.</td>
<td>+(62) (274) 565383</td>
<td>morisco@gadjahmada.edu</td>
</tr>
<tr>
<td>Engineer</td>
<td>Ashar Saputra, Ph.D</td>
<td>JI.Plemburan Gg. Mulia III/No.1 Yogyakarta, Indonesia</td>
<td>+(62) 85729414557</td>
<td>ashar@tsipil.ugm.ac.id</td>
</tr>
<tr>
<td>Engineer</td>
<td>Inggar S.Irawati, S.T., M.T</td>
<td>Parum Citra Rejodani No C6 Jl. Palagan Km 11,5 Sleman Yogyakarta - Indonesia</td>
<td>+(62) 811254637</td>
<td>inggar_irawati@yahoo.com</td>
</tr>
<tr>
<td>Bamboo consultant</td>
<td>Jorg Stamm</td>
<td>Ecobamboo.net Gerente - Calle 14N 7# 09 Popayan Colombia</td>
<td>+(57) - 300 557 1021</td>
<td>joerg@joergstamm.com</td>
</tr>
<tr>
<td>Bamboo Consultant</td>
<td>Iskandar Halim</td>
<td>Blumbungan, Sibang kaja Abian Semal</td>
<td>+(62) - 812 3675 4616.</td>
<td>chris.majors@bluebottle.com</td>
</tr>
<tr>
<td>Environment power Consultant</td>
<td>Rinaldo S. Brutoco</td>
<td>312 fairview Rd, Ojai, California 93023 USA</td>
<td>+1 (805) 6406951</td>
<td>rinaldo@shangrilagroup.net</td>
</tr>
<tr>
<td>Environment power Consultant</td>
<td>Rinaldo S. Brutoco</td>
<td>312 fairview Rd, Ojai, California 93023 USA</td>
<td>+1 (805) 6406951</td>
<td>rinaldo@worldbusiness.org</td>
</tr>
<tr>
<td>Author & Environmental consultant</td>
<td>Thomas L Friedman</td>
<td>The New York Times Foreign Affairs Columnist</td>
<td>+1 - 2208620377</td>
<td>tfriedman@aol.com</td>
</tr>
<tr>
<td>Contractor</td>
<td>Ketut Indra Saputra</td>
<td>Br. Kaja Kauh- Tulikup, Gianyar - Bali</td>
<td>+(62) - 811389399</td>
<td></td>
</tr>
<tr>
<td>Contractor</td>
<td>I Ketut Sudarma</td>
<td>Br. Sayan, Ubud Gianyar - Bali</td>
<td>+62 - 0361 7856688</td>
<td></td>
</tr>
<tr>
<td>Master craftsman</td>
<td>Sutanaya, I Gede</td>
<td>Br. Bukian Kawan Ds Bukian, Payangan Gianyar - Bali</td>
<td>0361 8547990</td>
<td></td>
</tr>
<tr>
<td>Master Craftsman</td>
<td>I Made Kura</td>
<td>Br. Bukian Kaja Ds Bukian, Payangan Gianyar - Bali</td>
<td>081 338 331 911</td>
<td></td>
</tr>
<tr>
<td>Master Craftsman</td>
<td>I Wayan Murdita</td>
<td>Br. Juga,Mas Ubud Gianyar Bali</td>
<td>081 338 032 186</td>
<td></td>
</tr>
<tr>
<td>Master Craftsman</td>
<td>I ketut Sumerta</td>
<td>Br. Selash Puhu Payangan Gianyar Bali</td>
<td>0361 780 7805</td>
<td></td>
</tr>
<tr>
<td>Master Craftsman</td>
<td>Budiarta, I Made</td>
<td>Br. Juga, Mas, Ubud Gianyar - Bali</td>
<td>0828 3674686</td>
<td></td>
</tr>
<tr>
<td>Master Craftsman</td>
<td>Dama, I Wayan</td>
<td>Br. Bukian, Bukian, Payangan, Gianyar - Bali</td>
<td>0852 37252862</td>
<td></td>
</tr>
<tr>
<td>Master Craftsman</td>
<td>Agustina</td>
<td>Mas, Br.Juga, Ubud Gianyar Bali</td>
<td>081 337 006 915</td>
<td></td>
</tr>
</tbody>
</table>
I. IDENTIFICATION

Project Title: Green School
Ya Ya San Kul Kul Campus in Bali

Street Address: Jl. Raya Sibang Kaja, Banjar Saren, Abiansemal
City: Badung, Bali, 80 352
Country: Indonesia

II. PERSONS RESPONSIBLE

A. Architect/Planner: Aldo Landwehr / John Hardy
B. Client: Green School
C. Consultant: Indra Saputra - Contractor
D. Please, indicate the specific name and complete address of the person(s) best able to provide information on the project (e.g., architect, client, consultant or other).

Name: Marni Dalle
Mailing address: Br. Piakan, Sibang Kaja
City: Abiansemal, Badung
Country: Bali, Indonesia
Postal code: 80352
E-mail: marni@ptbambu.com
Telephone: +62 812 389 5887
III. PROJECT DESCRIPTION

Green School with its affiliates Pt. Bambu and Merrangi Foundation was founded by John and Cynthia Hardy, designers and environmentalists from Bali, Indonesia. They started to offset their carbon footprints a few years ago by supporting the planting of bamboo to reforest the neighboring Island of Nusa Penida. Soon, they became advocates for the use of bamboo and wanted to create a project that offered a strong alternative to rain forest timber as a building material, while participating in the fight against climate change and poverty. They decided to build a school which had to demonstrate how to:

- Build with sustainable and environmentally friendly materials;
- Inspire children and dwellers to live sustainably through daily life experience;
- Motivate other communities into joining the initiative of fighting climate change and poverty.

To build such a project, three entities were created: the Green School (the architectural project), PT Bambu and the Merrangi Foundation that work hand in hand.

- The Green School (built by PT Bambu) is an educational institute that teaches modern curriculum layered with Green Education. Beside the traditional subjects of math’s, sciences and languages, children learn on the campus, located on 8 hectares of organic farm land, about environmental practices, 21st century science, renewable energy resources, aquaculture and organic farming.

- PT. BAMBU is an architectural firm and construction company that uses bamboo as its primary building material. Their building process uses sustainable materials therefore avoiding rain forest timber.

- The Merrangi Foundation or the Bamboo Community Project is an initiative to develop plantations of high quality bamboo timber through a network of local farmers. In just a few years time it will generate enough bamboo for the growing need of sustainable construction and to supplement income for the farming community.

Because of the link between these three entities, it is important to present the project as a whole process where multiple communities are involved in the production and transformation of bamboo into buildings. In this case, the farmers plant and harvest the bamboo; the local artisans transform it into materials for design and construction which then supplies the master builders. The project functions very well and could serve as a model as it has developed sustainable ecological buildings and new markets benefiting the local communities.

In the following pages the description and inter-relationship of these three entities are presented in more detail along with the argument defining the great qualities of this architectural project.
Green School

The buildings on the Green School campus are distributed over 8 hectares of land divided by the Ayung River, whose western bank supports classrooms, libraries, laboratories and a cultural arena, while the eastern bank serves as the setting for the school’s kitchen, faculty housing, and guest villas. The land is designed throughout the vast campus with shaded walkways, elegantly curving steps traversing the rugged topography that is blanketed by farming activities such as aquaculture ponds, rice fields and organic vegetable gardens.

The simple classroom structures are beautiful umbrellas protecting the staff and students learning environment, which incorporates the hand crafted bamboo desks, chairs and blackboards. These classrooms, with no walls, are implanted on the rice fields far enough away from each other to keep distraction to a minimum. The style of the offices, housing and other buildings range from traditional Balinese forms to organic, elegant shapes all made out of bamboo from the structure, to roof supports, to flooring, walls and furniture. They have been conceived to also evolve and serve as models for private housing sector.
All structures are built with sustainable, natural materials such as traditional earth walls, bamboo and alang-alang grass, restricting the use of cement to primarily below ground. Up to this date, about 25,000 *Petung* (structural bamboo) and 18,000 *Tali* (roof rafters bamboo) have been used in the Green School buildings. Of particular note are the construction techniques; placing the bamboo structural posts on river rocks summing the foundations (preventing bamboo from water exposure), the traditional “fish mouth” bamboo joinery (allowing for the strongest connection between bamboo posts and beams), and the attachment of the alang-alang grass thatch as a roofing material.

Among the first structures to be completed on the campus was the Kulkul bridge suspended across the Ayung River, the kitchen and offices for PT Bambu. The bridge, that elegantly unites the land, was built in September 2007 using manpower accordingly to traditional building techniques. It is now used daily by students, faculty and the local village population en route to temple, rice fields, work or school.

The kitchen was built in November 2007 and provides free meals to all workers at PT Bambu and Green School. The helix design of the structure served as the inspiration for the largest building on Campus: The Heart of School.
The Heart of School is truly an amazing bamboo structure. Started in October 2008 and completed in May 2009, the building reflects the expertise acquired throughout earlier projects on campus and as such is worth being mentioned. It is located on the main cross roads of the campus, close to everything and attracting the passage of many people. On its poles, more than five hundred and twenty names are carved, representing the donors supporting the Balinese scholarship program.

The design of three interconnected helixes is the result of a multitude of sketches, followed by models at 1:100 scale rebuilt until all the details were understood. Then, the engineers refined the drawings for wind, rain and earthquake resistance. This complex structure is 60 meters long by 25 meters wide with a center tower made up of 28 pieces of continuous bamboo which culminant at 18 meters in height. There is a total of 76 pieces in all 3 towers, all of which were installed without the use of heavy machinery. Therefore, the Heart of School has a strong presence yet with a human scale as it is still shorter than the coconut trees beside it.

Its roof thatch counts 20,000 pieces of alang-alang which took 4 months to apply. The floors are planed planks made from splits of bamboo held together by bamboo pins. In the same manner, most of the building is pinned with the exception of those structurally critical points where bolts were used to join the bamboo and these hollows were injected with cement. The building has no walls and at times there is the need to erect sails to keep out the wind and rain. Finally, each tower counts 3 levels connected by staircases bringing the 1752 square meters of floor space in at a total cost of US$ 225,000.

The other factors which make the Green School really special are the way land and water usage, as well as energy consumption are planned. As the land which hosts the school buildings used to be rice fields, every
possible green space remaining on campus is now used to grow organic food. The vegetables serve the kitchen or are sold at the school fruit and vegetable market. The campus has its own filtered spring water and waste water is recycled for the gardens. In term of energy use, the philosophy aims to be as independent as possible from the grid. To that end a micro-hydro power station has already been implanted at the river bank and the nine-meter vortex generator will soon power the campus. Other sustainable energy solutions ranging from solar power, biodiesel and predominantly natural air-conditioning will be implanted as the project matures.

PT Bambu: The bamboo contractor and master builders

Today PT Bambu is a construction company running with 150 people including 45 women. The team counts designers, artisans and workers with 90 persons coming from the local villages. The company was created to build the Green School and is now developing into the private sector housing market and furniture production.

The fact that bamboo can substitute as wood in manufacturing construction materials has been widely exploited by PT Bambu. The bamboo is first treated with Borax and then transformed into various products. The larger species are used for structural posts and beams; smaller ones for partitions, rails, roof, etc. and split bamboo is transformed into curved beams, flooring panels, as well as an extensive range of furniture. The potential of bamboo as a construction material has begun to be widely recognized. It is included in the building codes in Hawaii and it is only a question of time before approvals appear elsewhere in the world.

PT Bambu gets the bamboo from local providers who harvest the highest quality bamboo ranging from the rigid Black Bamboo (*Dendrocalamus asper*), Bamboo duri (*Bambusa arundinacea*), Bamboo tali (*Gigantochloa apus*), Bamboo Guadua (*Guadua angustifolia*), and Bamboo petung (*Dendrocalamus giganteus*) which can reach 25 centimeters in diameter. Within 4 years, farmers participating in the Meranggi Foundation program will also become bamboo timber suppliers.

Meranggi Foundation or the Bamboo Community Project

The Meranggi Foundation is a Non Governmental Organization working in the outgrowing of commercially valuable bamboo species. It has established over 60,000 bamboo seedlings in the nurseries and distributing 15,000 seedlings free of charge to 1,500 participating farmers across Bali. The Foundation records planting records with GPS, and monitors bamboo growth rates as well as secures markets for future bamboo trade.
TIMETABLE

GREENSCHOOL BUILDINGS

<table>
<thead>
<tr>
<th>No.</th>
<th>Building</th>
<th>Completed Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PT Bambu Wantilan Office</td>
<td>October 2007</td>
</tr>
<tr>
<td>2</td>
<td>PT Bambu Kitchen</td>
<td>November 2007</td>
</tr>
<tr>
<td>3</td>
<td>Director House</td>
<td>December 2007</td>
</tr>
<tr>
<td>4</td>
<td>Wave House</td>
<td>October 2007</td>
</tr>
<tr>
<td>5</td>
<td>Lidi House</td>
<td>October 2007</td>
</tr>
<tr>
<td>6</td>
<td>Teacher House 1A</td>
<td>May 2008</td>
</tr>
<tr>
<td>7</td>
<td>Teacher House 1B</td>
<td>May 2008</td>
</tr>
<tr>
<td>8</td>
<td>Teacher House 2A</td>
<td>May 2008</td>
</tr>
<tr>
<td>9</td>
<td>Teacher House 2B</td>
<td>June 2008</td>
</tr>
<tr>
<td>10</td>
<td>Teacher House 3A</td>
<td>June 2008</td>
</tr>
<tr>
<td>11</td>
<td>Teacher House 3B</td>
<td>June 2008</td>
</tr>
<tr>
<td>12</td>
<td>Teacher House 3C</td>
<td>June 2008</td>
</tr>
<tr>
<td>13</td>
<td>Drop Off Bale</td>
<td>August 2008</td>
</tr>
<tr>
<td>14</td>
<td>Kulkul Bridge</td>
<td>September 2007</td>
</tr>
<tr>
<td>15</td>
<td>Daniel House</td>
<td>October 2007</td>
</tr>
<tr>
<td>16</td>
<td>John Button House</td>
<td>October 2007</td>
</tr>
<tr>
<td>17</td>
<td>Ron's Office</td>
<td>March 2009</td>
</tr>
<tr>
<td>18</td>
<td>Classroom #1</td>
<td>November 2007</td>
</tr>
<tr>
<td>19</td>
<td>Classroom #2</td>
<td>December 2007</td>
</tr>
<tr>
<td>20</td>
<td>Classroom #3</td>
<td>December 2007</td>
</tr>
<tr>
<td>21</td>
<td>Classroom #4</td>
<td>January 2008</td>
</tr>
<tr>
<td>22</td>
<td>Kindergarten and Pre K</td>
<td>May 2008</td>
</tr>
<tr>
<td>23</td>
<td>Pre School</td>
<td>May 2008</td>
</tr>
<tr>
<td>24</td>
<td>Parent Bale Kindergarten</td>
<td>July 2008</td>
</tr>
<tr>
<td>25</td>
<td>Mepantigan Studio</td>
<td>December 2007</td>
</tr>
<tr>
<td>26</td>
<td>Mepantigan Changing Room</td>
<td>December 2007</td>
</tr>
<tr>
<td>27</td>
<td>Mepantigan Office</td>
<td>December 2007</td>
</tr>
<tr>
<td>28</td>
<td>GreenSchool Gym</td>
<td>February 2009</td>
</tr>
<tr>
<td>29</td>
<td>Permaculture House</td>
<td>November 2007</td>
</tr>
<tr>
<td>30</td>
<td>Heart of School</td>
<td>May 2008</td>
</tr>
<tr>
<td>31</td>
<td>Wantilan Camp</td>
<td>October 2007</td>
</tr>
<tr>
<td>32</td>
<td>Camp Buildings</td>
<td>January 2008</td>
</tr>
<tr>
<td>33</td>
<td>Camp Yurts</td>
<td>December 2007</td>
</tr>
<tr>
<td>34</td>
<td>Kitchen Camp</td>
<td>June 2008</td>
</tr>
</tbody>
</table>
IV. NOMINATOR’S STATEMENT

The philosophy behind the Green School campus was to reinvent the bamboo vernacular from the traditional uses to an internationally recognized strong and beautiful building material that fully endorses environmental aspects such as sustainability and ecological bi-products.

The design of the Green School aims to change people’s perception of bamboo: often viewed as traditional, cheap, and only used for small structures, it is gradually evolving into a modern day material with the potential to create great buildings. To that end, scientific research, experimental construction techniques and international certification are helping to remove design limitations for every building coming out of the ground.

Nevertheless, the Green School is not just a masterpiece in bamboo architecture and construction; the project has dimension, depth, complexity and goals; it is above all about the life of many communities who are planting, harvesting, transforming, designing, building and training with bamboo as well as living in it.

Green School Campus sets an example on sustainability

The respect for natural space and the use of natural material inspired from local indigenous knowledge shapes the land of the Green School. By distributing on their 8 hectares of land, school structures, small enterprises and housing, the designers strongly demonstrate how the potential of a local, renewable resource such as bamboo, can serve to shape today’s and tomorrow’s buildings for an entire community.

The project is a source of inspiration in terms of using local traditional material for construction. It invents a new language in a variety of architectural designs. Here, on the Green School campus, bamboo is the most widely available building material, where in other places and contexts, it could be earth or stone. Here, the message says that it is possible to do a lot with connections to the natural and social environment, stepping away from cement, monotony and international styles.

The buildings are adapted to their Asian environment, where comfort can be found in natural ventilated spaces under the protection of roofs serving as umbrellas. A small one shields each classroom, but much greater umbrellas shelter the meeting, exhibition, performance and social spaces.

Innovative ventilation solutions are also put in place when searching for additional comfort. Once again, good sense is used at its best with the experiment of the “Bubble Room” built out of a cotton textile, impregnated with natural latex, in which air is pushed through by a ventilator to inflate and cool the space on the hottest of days.

Notions of sustainability on land and resource use are present at every corner of the campus: The various facilities are settled on a land where the fertile soil is used as an organic vegetable garden; the water and
sun are used as power sources; and the walkable proximity is used as an economy of means. The grey water recycled from the kitchen or bathroom is used to water the vegetal garden. Fertilizer is produced from composting natural waste coming from the garden but also from the dry toilets system installed throughout the property as well as from the farm animals living on the campus. The gardeners are producing with great care the vegetables for the campus canteen. Their hard work is recognized with their names presented on every lot cultivated.

Planting bamboo has an environmental side effect and this project raised the awareness of conservation in Bali. Fast growing bamboo can be an effective erosion control barrier which helps to restore degraded land. Reforestation with bamboo may be taken into account with carbon trade initiatives as this plant can sequester carbon up to 12 tons / hectare per year. Finally, the ethical choice of using the uncultivated land resources of hundreds of farmers for bamboo plantation has the benefit to disperse the density of vegetal coverage without stripping forest or disturbing far land usage.

Design to elevate spirit with the use of local and natural material

The Green School buildings inspired from traditional Balinese materials and architecture, are fine examples of master bamboo construction. Spirit is naturally elevated as the discovery of the place goes on: The design makes a statement in creating spaces which are immediately appreciated for their comfort, originality, and connection with nature giving a sense of inspiration and admiration. The perception of buildings established in a natural environment such as the tropical garden, gives an exceptional feeling of existence.

Then, the children educated in such an environment automatically assimilate notions on ecology, environment and sustainability since it is also part of their everyday life experience at the school: they plant and harvest, take care of the farm animals, built their own bamboo projects, learn how to use precious natural resources such as water and are constantly exposed to recycling and energy safeguards.

Empowering local people with an ecological responsibility

The social impact of the project has been significant. The plantation of bamboo on uncultivated land offers the benefit of an extra source of income for the farmer. Bamboo can be selectively harvested annually and regenerates from a clump without the need to replant. The development of this multiple small scale bamboo farming is crucial for the whole project since it is a very efficient way to produce enough bamboo for the growing demand in manufacturing and construction. Then, the ethical choice to distribute most of the bamboo production to the local farming communities ensures a shared benefit.
The construction of the Green school is inspiring other local designers and master builders. The perception of bamboo construction is changing as it stands now for quality and durability; this will bring new project opportunities, more artisans training, and more jobs for the local communities.

Future projects aim to further develop partnerships with the local community by planning the construction of a medical clinic and a cultural center. Green School is also dedicated to providing a significant amount of scholarship opportunities for students from the local community so that the school fosters a diverse and vibrant mix of students from all nationalities.

The project should be encouraged as similar initiatives arise in the region

Notion of green architecture and sustainability is not new. We see today various ways to re-invent it. Other architects in the region are working on similar initiatives. For example, the Singaporean architect Tay Kheng Soon is building a bamboo school in Thailand in collaboration with Mechai Viravidya, chairman of the Population and Community Development Association (PDA).

The Green School campus in Bali Indonesia, represents an achievement as a successful social and environmental project; it should be strongly encouraged and recognized, as the process could serve as a world model with potential for other multiple applications such as low cost housing or emergency shelter.

V. ADDITIONAL INFORMATION

I send this document by e-mail with the attachment: AKAA photo album - Green School, Bali.

Green School (www.greenschool.org) and PT Bambu web sites (www.ptbambu.com) give complementary information.

Name (please print): Gisèle TAXIL WARDELL

Date: September 5, 2009

Signature:

Please return the completed form by e-mail, fax, or post to:
The Aga Khan Award for Architecture, P.O. Box 2049, 1211 Geneva2, Switzerland
Telephone: (41.22) 909.72.00 Facsimile: (41.22) 909.72.92 Website: www.akdn.org E-mail: acaa@akdn.org
Green School with its affiliates PT Bambu and Meranggi Foundation was founded by John and Cynthia Hardy, designers and environmentalists from Bali, Indonesia. Concerned about the depletion of the world’s resources, they became advocates for the use of bamboo and wanted to create a project that offered a strong alternative to rain forest timber as a building material, while participating in the fight against climate change and poverty. They decided to build a school to demonstrate how to: Build with sustainable materials; Inspire and educate children to live sustainably; Motivate communities to fight climate change and poverty.

To build such a project, three entities were created: the Green School (the architectural project), PT Bambu and the Meranggi Foundation that work hand in hand.

The Meranggi Foundation (Bamboo Community Project) is an initiative to develop plantations of bamboo timber through gifting seedlings to local rice farmers together with advice about where to plant on previously unproductive land. In a few years time it will generate enough bamboo for the growing need of sustainable construction and supplement the income of farmers.

PT Bambu is a design & construction company that promotes the use of bamboo as timber for buildings and furniture to avoid further depletion of the rain forest.

The Green School, built by PT Bambu is an educational institute teaching a modern curriculum layered with Green Education. Beside traditional subjects, children learn on campus (located on organic farmland), about environmental practices, renewable energy, aquaculture and organic farming.
This project involves multiple communities in the production and transformation of bamboo into buildings and later, peoples behavior.

Farmers plant and harvest the bamboo; local artisans transform it into material for construction which then supplies the master builders.

The project serves as a model of sustainable ecological building and replicas are already in planning to benefit other communities around the world.
NOTE: TYPICAL STAIR LAYOUT
19 R @ 16.5 Cn = 3.2 M
18 T @ 29 Cn = 5.22 M

Heart of School
2nd Floor Plan

Project Code: 3663, IDA
Bridge

classroom grade 7-8

classroom_AC bubble

classroom_yurt_1
classroom_yurt_2

Green Warung

Drop off

facility_sawdust waterheater

Director House

Heart Of School
MATERIALS IDENTIFICATION FORM

Provide a full list of all material being submitted

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Architect's Record</td>
<td>4 pages</td>
</tr>
<tr>
<td>2</td>
<td>Main A-3 presentation panels</td>
<td>2 panels</td>
</tr>
<tr>
<td>3</td>
<td>Image Identification Form</td>
<td>6 pages</td>
</tr>
<tr>
<td>4</td>
<td>Materials Identification Form</td>
<td>1 page</td>
</tr>
<tr>
<td>5</td>
<td>PT Bambu brochure</td>
<td>1 CD</td>
</tr>
<tr>
<td>6</td>
<td>Green Camp brochure</td>
<td>1 CD</td>
</tr>
<tr>
<td>7</td>
<td>CD of digital presentation panels</td>
<td>1 CD</td>
</tr>
<tr>
<td>8</td>
<td>CD of submitted digital images</td>
<td>1 CD</td>
</tr>
<tr>
<td>9</td>
<td>Soft copy of Architect's record, Image Identification Form, and Material Identification Form</td>
<td>1 CD</td>
</tr>
<tr>
<td>10</td>
<td>Meranggi Foundation brochure</td>
<td>1 CD</td>
</tr>
<tr>
<td>11</td>
<td>Green School Site Plan Drawing</td>
<td>1 page</td>
</tr>
<tr>
<td>12</td>
<td>Heart of School Architectural Drawing Set</td>
<td>8 pages</td>
</tr>
<tr>
<td>13</td>
<td>Classrooms Architectural Drawing Set</td>
<td>15 pages</td>
</tr>
<tr>
<td>14</td>
<td>Green School Profile and Publication folder</td>
<td>1 folder</td>
</tr>
<tr>
<td>15</td>
<td>Contact Sheet of submitted digital images</td>
<td>6 pages</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>FILE NAME</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Meranggi_Seedling_1</td>
<td>Bamboo seedlings in the nursery</td>
</tr>
<tr>
<td>2</td>
<td>Meranggi_Seedling_2</td>
<td>Bamboo seedlings at Meranggi Foundation</td>
</tr>
<tr>
<td>3</td>
<td>Meranggi_Seedling_3</td>
<td>Bamboo seedlings</td>
</tr>
<tr>
<td>4</td>
<td>Meranggi_Farmer_1</td>
<td>Proud farmer and his bamboo seedlings</td>
</tr>
<tr>
<td>5</td>
<td>Meranggi_Farmer_2</td>
<td>Farmer planting his bamboo seedlings</td>
</tr>
<tr>
<td>6</td>
<td>Meranggi_Farmer_3</td>
<td>Meranggi nursery gardeners</td>
</tr>
<tr>
<td>7</td>
<td>Meranggi_Farmer_4</td>
<td>Planting bamboo</td>
</tr>
<tr>
<td>8</td>
<td>Production_1</td>
<td>Finishing a chair in PT BAMBU production</td>
</tr>
<tr>
<td>9</td>
<td>Production_2</td>
<td>Final coat on a chair in PT BAMBU production</td>
</tr>
<tr>
<td>10</td>
<td>Production_3</td>
<td>Sanding of bamboo furniture in PT BAMBU</td>
</tr>
<tr>
<td>11</td>
<td>Production_4</td>
<td>Sanding a chair in PT BAMBU production</td>
</tr>
<tr>
<td>No.</td>
<td>Task Description</td>
<td>Details</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>Production_5</td>
<td>Making a bamboo plank in PT BAMBU production</td>
</tr>
<tr>
<td>13</td>
<td>Production_6</td>
<td>Heat treatment for wax finish on table top in PT BAMBU production</td>
</tr>
<tr>
<td>14</td>
<td>Production_7</td>
<td>Finishing a desk lamp in PT BAMBU production</td>
</tr>
<tr>
<td>15</td>
<td>Prepare Block_M50041</td>
<td>Final touches on a bamboo sculpture</td>
</tr>
<tr>
<td>16</td>
<td>construction_mepantigan office</td>
<td>Structural work on the Mepantigan office</td>
</tr>
<tr>
<td>17</td>
<td>construction_HOS_1</td>
<td>Carpenter install bamboo floor plank in Heart of School</td>
</tr>
<tr>
<td>18</td>
<td>construction_roofing_3</td>
<td>Artisans install alang-alang thatch roofing in Classroom #2</td>
</tr>
<tr>
<td>19</td>
<td>construction_wantilan_1</td>
<td>Artisan joining bamboo structure of PT BAMBU office</td>
</tr>
<tr>
<td>20</td>
<td>construction.Foundation_base</td>
<td>Preparing rock to support bamboo above ground level of foundations for Classroom #2</td>
</tr>
<tr>
<td>21</td>
<td>Construction_fishmouth</td>
<td>Fish mouth joinery for the Kindergarten classroom</td>
</tr>
<tr>
<td>22</td>
<td>construction_roofing_1</td>
<td>Installing the skylight support on Classroom #2</td>
</tr>
<tr>
<td>23</td>
<td>construction_roofing_2</td>
<td>Working on the roof rafters of Classroom #2</td>
</tr>
<tr>
<td></td>
<td>Project Title</td>
<td>Project Code</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>24</td>
<td>construction_lavastone pathway</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Construction_Bridge_1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Construction_Bridge_2</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Classroom 4_1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Classroom 4_2</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Classrooms 1/2_1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Kul Kul Bridge_1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Kul Kul Bridge_2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Kul Kul Bridge_3</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Heart of School_1</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>PTB kitchen_1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>PTB kitchen_interior_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project ID</td>
<td>Project Title</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>36</td>
<td>PTB kitchen_interior_2</td>
<td>The magnificent architecture of the PT BAMBU kitchen</td>
</tr>
<tr>
<td>37</td>
<td>PTB kitchen_interior_3</td>
<td>The center column of the PT BAMBU kitchen</td>
</tr>
<tr>
<td>38</td>
<td>Mepantigan Studio_1</td>
<td>Mepantigan Studio - exterior multi functional school / community / performance space</td>
</tr>
<tr>
<td>39</td>
<td>Mepantigan Studio_2</td>
<td>Mepantigan Studio - interior multi functional school / community / performance space</td>
</tr>
<tr>
<td>40</td>
<td>facility_sedimen rock pathway</td>
<td>Pathway leading to the Kul Kul bridge</td>
</tr>
<tr>
<td>41</td>
<td>facility_sawdust water heater</td>
<td>Hot water heating for teacher housing fueled by bamboo sawdust</td>
</tr>
<tr>
<td>42</td>
<td>facility_natural pool</td>
<td>Natural spring fed swimming pond</td>
</tr>
<tr>
<td>43</td>
<td>facility_vegetable garden</td>
<td>Leaf lettuce growing in the organic vegetable garden near Kul Kul Bridge</td>
</tr>
<tr>
<td>44</td>
<td>facility_food preparation_1</td>
<td>Sorting grains of rice at the PT BAMBU Kitchen</td>
</tr>
<tr>
<td>45</td>
<td>facility_food preparation_2</td>
<td>Cooking rice on stoves fueled by bamboo sawdust</td>
</tr>
<tr>
<td>46</td>
<td>facility_food preparation_3</td>
<td>Preparations in the PT BAMBU kitchen for worker lunches</td>
</tr>
<tr>
<td>47</td>
<td>facility_water vortex</td>
<td>The vortex micro hydro power generator</td>
</tr>
<tr>
<td>#</td>
<td>Activity Type</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>48</td>
<td>Classroom_drama</td>
<td>Drama class in Heart of School</td>
</tr>
<tr>
<td>49</td>
<td>Classroom_science lab</td>
<td>Science lecture in Classroom #5, grade 9</td>
</tr>
<tr>
<td>50</td>
<td>Classroom_shadow puppet</td>
<td>Traditional balinese shadow puppet performance in Kindergarten Classroom</td>
</tr>
<tr>
<td>51</td>
<td>Classroom_study_1</td>
<td>Students at work in Classroom #3, grade 3/4</td>
</tr>
<tr>
<td>52</td>
<td>Classroom_study_2</td>
<td>Lecture in Classroom #2, grade 7/8</td>
</tr>
<tr>
<td>53</td>
<td>Classroom_study_3</td>
<td>A teacher inspiring his students in Classroom #3 using our bamboo blackboard, grade 3/4</td>
</tr>
<tr>
<td>54</td>
<td>Classroom_study_4</td>
<td>Students in environmental studies program in classroom #1, grade 5/6</td>
</tr>
<tr>
<td>55</td>
<td>Classroom_public lecture</td>
<td>Student lecture in Mepantigan Studio</td>
</tr>
<tr>
<td>56</td>
<td>Classroom_yurt_1</td>
<td>Fan cooled yurt for Classroom #3, grade 3/4</td>
</tr>
<tr>
<td>57</td>
<td>classroom_yurt_2</td>
<td>Student games in Classroom #3 yurt, grade 3/4</td>
</tr>
<tr>
<td>58</td>
<td>Classroom_AC bubble</td>
<td>Lecture in air conditioned bubble for Classroom #1, grade 5/6</td>
</tr>
<tr>
<td>59</td>
<td>Activity_Seminar</td>
<td>Student assembly in Mepantigan studio</td>
</tr>
<tr>
<td>No.</td>
<td>Activity Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>60</td>
<td>Activity_Conference</td>
<td>Conference in Heart of School</td>
</tr>
<tr>
<td>61</td>
<td>Activity_Ceremony</td>
<td>Visitor Reception on the Kul Kul bridge</td>
</tr>
<tr>
<td>62</td>
<td>Activity_Planting_1</td>
<td>Student planting the vegetable garden outside classroom #4, grade 1/2</td>
</tr>
<tr>
<td>63</td>
<td>Activity_Field</td>
<td>Student activities on the sport field</td>
</tr>
<tr>
<td>64</td>
<td>Activity_Outbond_1</td>
<td>Climbing activity at Green Camp</td>
</tr>
<tr>
<td>65</td>
<td>Activity_Lunch bridge</td>
<td>Reception on the Kul Kul bridge</td>
</tr>
<tr>
<td>66</td>
<td>Activity_Kids in river</td>
<td>Students on assignment, grade 7/8</td>
</tr>
<tr>
<td>67</td>
<td>Activity_Mepantigan martial art_1</td>
<td>Mud wrestling performance pit</td>
</tr>
<tr>
<td>68</td>
<td>Activity_Mepantigan martial art_2</td>
<td>Traditional Balinese mud wrestling</td>
</tr>
</tbody>
</table>